129 research outputs found

    Determination of cadmium toxicity and the relationship between dose and metallothionein levels in the honey bee, Apis mellifera

    Get PDF

    Increasing phylogenetic resolution at low taxonomic levels using massively parallel sequencing of chloroplast genomes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Molecular evolutionary studies share the common goal of elucidating historical relationships, and the common challenge of adequately sampling taxa and characters. Particularly at low taxonomic levels, recent divergence, rapid radiations, and conservative genome evolution yield limited sequence variation, and dense taxon sampling is often desirable. Recent advances in massively parallel sequencing make it possible to rapidly obtain large amounts of sequence data, and multiplexing makes extensive sampling of megabase sequences feasible. Is it possible to efficiently apply massively parallel sequencing to increase phylogenetic resolution at low taxonomic levels?</p> <p>Results</p> <p>We reconstruct the infrageneric phylogeny of <it>Pinus </it>from 37 nearly-complete chloroplast genomes (average 109 kilobases each of an approximately 120 kilobase genome) generated using multiplexed massively parallel sequencing. 30/33 ingroup nodes resolved with ≥ 95% bootstrap support; this is a substantial improvement relative to prior studies, and shows massively parallel sequencing-based strategies can produce sufficient high quality sequence to reach support levels originally proposed for the phylogenetic bootstrap. Resampling simulations show that at least the entire plastome is necessary to fully resolve <it>Pinus</it>, particularly in rapidly radiating clades. Meta-analysis of 99 published infrageneric phylogenies shows that whole plastome analysis should provide similar gains across a range of plant genera. A disproportionate amount of phylogenetic information resides in two loci (<it>ycf</it>1, <it>ycf</it>2), highlighting their unusual evolutionary properties.</p> <p>Conclusion</p> <p>Plastome sequencing is now an efficient option for increasing phylogenetic resolution at lower taxonomic levels in plant phylogenetic and population genetic analyses. With continuing improvements in sequencing capacity, the strategies herein should revolutionize efforts requiring dense taxon and character sampling, such as phylogeographic analyses and species-level DNA barcoding.</p

    Mitochondrial genome sequences illuminate maternal lineages of conservation concern in a rare carnivore

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Science-based wildlife management relies on genetic information to infer population connectivity and identify conservation units. The most commonly used genetic marker for characterizing animal biodiversity and identifying maternal lineages is the mitochondrial genome. Mitochondrial genotyping figures prominently in conservation and management plans, with much of the attention focused on the non-coding displacement ("D") loop. We used massively parallel multiplexed sequencing to sequence complete mitochondrial genomes from 40 fishers, a threatened carnivore that possesses low mitogenomic diversity. This allowed us to test a key assumption of conservation genetics, specifically, that the D-loop accurately reflects genealogical relationships and variation of the larger mitochondrial genome.</p> <p>Results</p> <p>Overall mitogenomic divergence in fishers is exceedingly low, with 66 segregating sites and an average pairwise distance between genomes of 0.00088 across their aligned length (16,290 bp). Estimates of variation and genealogical relationships from the displacement (<it>D</it>) loop region (299 bp) are contradicted by the complete mitochondrial genome, as well as the protein coding fraction of the mitochondrial genome. The sources of this contradiction trace primarily to the near-absence of mutations marking the D-loop region of one of the most divergent lineages, and secondarily to independent (recurrent) mutations at two nucleotide position in the D-loop amplicon.</p> <p>Conclusions</p> <p>Our study has two important implications. First, inferred genealogical reconstructions based on the fisher D-loop region contradict inferences based on the entire mitogenome to the point that the populations of greatest conservation concern cannot be accurately resolved. Whole-genome analysis identifies Californian haplotypes from the northern-most populations as highly distinctive, with a significant excess of amino acid changes that may be indicative of molecular adaptation; D-loop sequences fail to identify this unique mitochondrial lineage. Second, the impact of recurrent mutation appears most acute in closely related haplotypes, due to the low level of evolutionary signal (unique mutations that mark lineages) relative to evolutionary noise (recurrent, shared mutation in unrelated haplotypes). For wildlife managers, this means that the populations of greatest conservation concern may be at the highest risk of being misidentified by D-loop haplotyping. This message is timely because it highlights the new opportunities for basing conservation decisions on more accurate genetic information.</p
    • …
    corecore